
A Proposed EDM Upgrade Path

Marc Paterno
CD Special Assignments, FNAL

June 7, 2000

Abstract

This document contains a proposed path to upgrade the DØ Event
Data Model (EDM). It tries to achieve two goals, to the degree which
they are compatible. The first goal is to obtain an EDM that is more
amenable to future upgrades and enhancements, and is more efficient; the
second goal is to ease the users’ transition from the current EDM to the
improved EDM.

1 Introduction

During the meetings of the May 2000 DØ Infrastructure Week, I presented a few
proposals for modification to the existing DØ Event Data Model (EDM). These
talks were summarized in my talk Updating RCP and the DØ EDM, avail-
able on the web at http://cdspecialproj.fnal.gov/d0/UpdatingEDM/index.htm.

This document sketches a proposal for how we might achieve the goal of
an improved EDM while allowing a significant (and adjustable) time period of
backward compatibility, both for code and for previously existing Monte Carlo
event samples. It is assumed that the readers are already familiar with the
proposals, which the interested reader can find in the talk noted above.

2 Phased Obsolescence

Some of the modifications suggested below are to enhance the backward com-
patibility of the code, either for old MC files or for old code, or both. This will
allow a more gradual move to the new EDM classes. However, it has the draw-
back of allowing new code to be written using the old interface. This should
be strongly discouraged by the algorithms groups. In the final event, it may
be that the only method of assuring compliance with the improved EDM is to
remove the backwards compatibility features. The timing of this removal is a
decision I happily leave to the management.

1

http://cdspecialproj.fnal.gov/d0/UpdatingEDM/index.htm
http://cdspecialproj.fnal.gov/d0/UpdatingEDM/index.htm


3 The Proposal

3.1 Modification to Event

The Event class is immediately modified as described in the talk. To summarize,
the following changes are made:

1. Event no longer inherits from d0 Object.

2. Event contains (and has sole ownership of) a single instance of Persistent-
Event (described in section 3.2).

3. The function template insertChunk(Event& e, auto ptr<T> input)
is modified to create a Provenance from the information in the given
AbsChunk. This introduces a space inefficiency, because some of the infor-
mation stored in the AbsChunk class (or stored in the concrete subclasses
of AbsChunk) will also be stored in the Provenance class.1

This change does not modify the requirement placed on the type used as
the template parameter T; it must be either AbsChunk, or a class that
inherits from AbsChunk. This modification will not break existing code.
It allows existing code to interact with new-format Event objects, but a
the cost of the inefficiency noted above.

4. A new Event friend function template is added, to support direct insertion
of Provenances and d0 Objects into the Event. The proposed signature is
the following:

template <typename D0OBJ> // this is a function template
ChunkID // it returns a ChunkID
insert(Event& e, const Provenance& p, auto_ptr<D0OBJ> obj);

Types to be used in place of the template parameter D0OBJ must inherit
from d0 Object. This function copies the Provenance and take ownership
of the incoming d0 Object, both of which are inserted into the given Event.
Because AbsChunk inherits from d0 Object, it is possible, in the short
term, for users to switch to this syntax before modifying their “chunks”.
Such use should be viewed only as a stepping-stone, on the way to rework-
ing of the chunks themselves.

The insertChunk function of item 3 would make use of this function.

5. The Event class is given a constructor that takes an instance of Persis-
tentEvent. For the sake of efficiency, it may be best for this constructor to
take an auto ptr<PersistentEvent>. The Event takes sole ownership
of the given PersistentEvent, and over all the d0 Objects therein.

1The data members of AbsChunk are one int, one time t struct, and one ChunkID ; these
would all be replicated in Provenance. In addition, the collections of parent ChunkIDs,
RCPIDs and EnvIDs stored in each subclass of AbsChunk would also be stored in Prove-
nance.

2

http://cdspecialproj.fnal.gov/d0/UpdatingEDM/index.htm


3.2 Addition of PersistentEvent

The class PersistentEvent inherits from d0 Object. It contains a vector of
structs, where each struct contains one Provenance and one d0 Ref<d0 Object>.

Although the class d0 Ref<T> allows shared ownership of the pointed-to T,
it is critical that there never be shared ownership of two such objects belonging
to different Events. Since this rule of ownership is a class invariant of Event, it
is enforced by Event. To assure this class invariant is kept, most manipulation
of PersistentEvent will be done by the class Event. The only other classes
that should need to directly manipulate PersistentEvents are ReadEvent and
WriteEvent.

3.3 Responsibilities of ReadEvent

The class ReadEvent is responsible for reading both old and new data formats.
Reading the old data format is more difficult and less efficient. It may be
classified as a short-term responsibility, because when the decision is made to
abandon the old format files this part of the code may be abandoned. Reading
new-format data is, of course, a permanent responsibility.

3.3.1 Short Term Responsibilities

Until the old-format files can be abandoned, ReadEvent must be able to read
old-format files, which are written as a sequence of old-format Event objects.
To read an event, it looks inside the old Event object2 and finds the EventValue
object. It then iterates over all the AbsChunks stored in the EventValue, and
uses the function insert (described above, in item 3 of section 3.1) to insert
them into the Event object.

Note that this means the process of reading old-format data automatically
translates the data into the new Event format. This does not magically trans-
form an old version of a concrete chunk class to a new improved version; that
transformation will have to be handled by some other mechanism, which I do
not address here.

Note also that this means every d0 Ref<AbsChunk> is dereferenced when
reading old-format data.

3.3.2 Permanent Responsibilities

For the long term, ReadEvent is responsible for reading new-format data files,
which are written as a sequence of PersistentEvent objects. ReadEvent is re-
sponsible for reading the PersistentEvent (which is a d0 Object) from the input
stream, and for creating a new Event object, using the constructor that takes
the just-read PersistentEvent. Note that ReadEvent is responsible for ensuring

2The new Event class is very different from the old Event class; it should not carry the
responsibility for reading old-format data, and knows nothing about conversion from the old
Event class.

3



that there is no shared ownership of the chunks that go into the Event. If Per-
sistentEvent is only used to accept the stream of chunks from a file, and is given
immediately to an Event, this should be simple.

3.4 Responsibilities of WriteEvent

The responsibility of WriteEvent is simple; given an Event, it must gain access to
a PersistentEvent, and write it to the output. In order to make output of tagged
chunks more efficient, Event should have member functions to allow construction
of the correct PersistentEvent instance for the specific output requested. The
Event will retain sole ownership of these PersistentEvent objects, but Write-
Event will be able to access them for writing.

The details of the interface of Event required for output must be specified by
collaboration between the authors of the EDM and of the iopackages package.

3.5 Final Phase

The final phase of the modification removes the backward compatibility fea-
tures. This allows some final simplification and cleanup of code, and reduces
the maintenance burden of the EDM. It also ensures that all code is actually
using the newer and more efficient version of the code.

The timing of implementing the final phase is a decision left to management.

1. The classes AbsChunk and EventValue are removed.

2. The function template insertChunk(Event& e, auto ptr<T> input)
is removed.

After this is done, it is no longer possible to read “old” Monte Carlo event
files. If necessary, those files could still be transformed into new format files,
subject to the ability of to transform each individual chunk class from “old”
to new format. When the proposed modifications to DØOM (regarding user-
controllable schema evolution) are in place, such backward compatibility will
be possible. But consideration should be given to the code maintenance burden
on all chunk designers when the decision regarding backward compatibility is
made.

4 Conclusion

This document is just a sketch of a proposed method of implementing the modi-
fications to the DØẼDM discussed during the May 2000 Software Infrastructure
meetings. It is, I hope, a useful starting point for the production of a concrete
plan of action, to be revised and extended as necessary.

4


	Introduction
	Phased Obsolescence
	Modification to Event
	Addition of PersistentEvent
	Responsibilities of ReadEvent
	Responsibilities of WriteEvent

